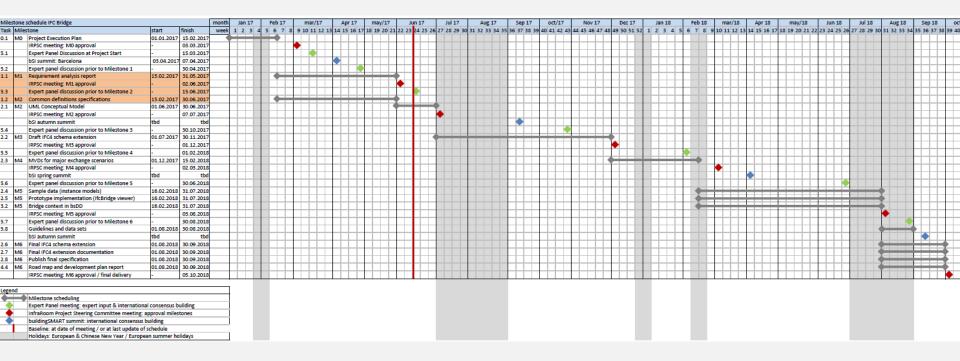
IFC-BRIDGE

PROJECT STATUS OVERVIEW

IFC-Bridge Project Team

Project outline


- 1. Requirements analysis & scope definitions
- Identify semantic elements and properties
 → Taxonomy
 - \rightarrow based on input from MiND, FHWA, KICT, CRBIM
- Conceptual model
 → entities, relationships, properties based on IFC
- 4. Create Schema Extension
- 5. Validate Schema, create sample models
- 6. Publish Schema extension

11 Expert Panel Meetings (8 online)

Project Schedule

• started Jan 2017, completed March 2019

WP1: Bridge Type Coverage

BRIDGE TYPES

The I-35W bridge that collapsed Wednesday in Minneapolis was designed as a "non-redundant" truss structure. Non-redundant bridges require less material and are cheaper to build but have no other pathways for loads to be disbursed in the event of a failure. That design has caused problems

GIRDER BRIDGE

A girder or beam bridge is arguably the most basic bridge. A log across a creek is an example of a girder bridge in its simplest form. Modern steel girder bridges often use I-beams or box girders in their construction.

EXAMPLE: The 2,165 foot Poplar Streeet Bridge.

SOURCES: Matsuo Bridge Co., Ltd., www.riverwebmuseums.org

TRUSS BRIDGE

The truss is a simple skeletal structure. In theory, the individual parts of a simple truss are only subject to tension and compression forces but not bending forces. Trusses are made up of small beams that when put together can support large amounts of weight and also span great distances.

EXAMPLE: The Old Chain of Rocks Bridge is a one-milelong truss bridge with a dramatic joint in the center.

ARCH BRIDGE

The second oldest bridge type, the arch doesn't require piers in the center. Arches use a curved structure. This provides high resistance to bending forces. Arches can only be used where the ground or foundation is solid and stable.

EXAMPLE: The Eads Bridge has a three-arch span that totals 1,647 feet.

with some other bridges, including the Silver Bridge that collapsed into the Ohio River in 1967 at the height of rush hour, carrying 31 vehicles and 46 people with it. Experts says greater redundancy could prevent a progressive collapse of a bridge.

CANTILEVER BRIDGE

A cantilever bridge is a

modified form of beam

bridge. The support is in the

middle of a span, not the end.

The advantage to a cantilever

wide spaces without the need

bridge is its ability to span

of extensive and expensive

EXAMPLE: The Greater New

Orleans Bridge over the

support while under

Mississippi River.

constuction.

CABLE-STAYED BRIDGE

A typical cable-stayed bridge is a continuous girder with one or more towers erected above piers in the middle of the span. Cables stretch down diagonally (usually to both sides) and support the girder from the towers.

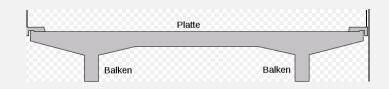
EXAMPLE: The Clark Bridge crossing the Mississippi going to Alton.

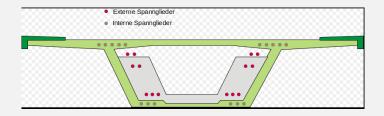
SUSPENSION BRIDGE

The suspension bridge allows for the longest spans. A typical suspension bridge is a continuous girder with one or more towers erected above piers in the middle of the span.

EXAMPLE: The Golden Gate bridge in San Francisco.

> Research by Mark Learman Graphic by John D. Telford | Post-Dispatch





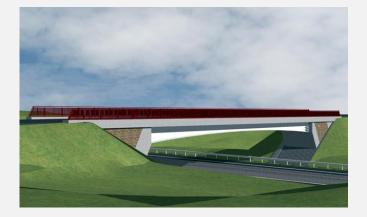
WP1: Bridge Type Coverage

Construction Type Covered

- Beam bridges
- Slab-girder bridges
- Box-girder bridges

Superstructure Geometry

- Straight
- Haunched
- In curve



WP1: Bridge Type Coverage

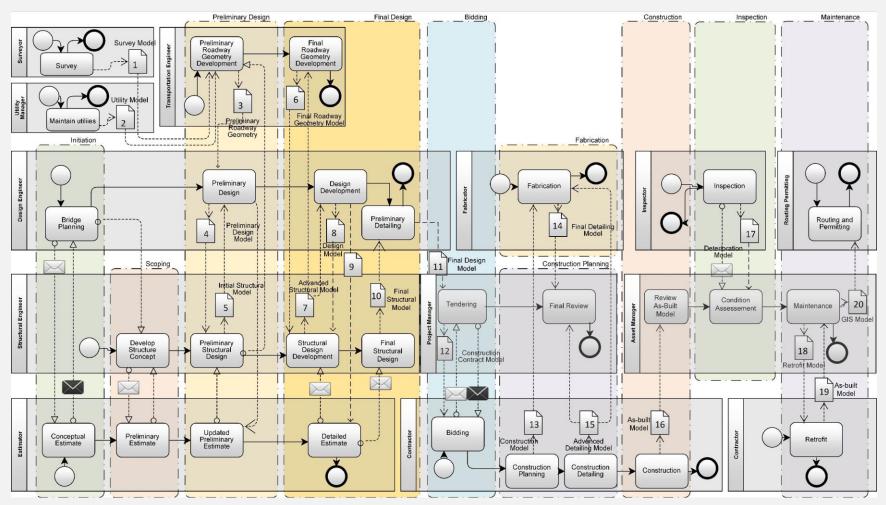
Material

- Reinforced Concrete bridges
- Prestressed Concrete bridges
- Steel/Concrete Composite bridges
- Steel girder bridges
- Steel bridges

No	Use case	Description	Purpose	IFC exchange scenario	Required geometry representation	Required semantic information	Priority	Complex ity	MVD
1	Initial State Modeling	initial data (terrain, soil, existing structures etc.) from various sources (including GIS) are brought into BIM space and exchanged using IFC	GIS (and other) data provides the basis for the design task	GIS & other sources to design application	Faceted <u>BRep</u> , Sweep Geometry where suitable (Deck, Rebar, Boring Piles etc), potentially based on alignment	Major design parameters, Material (soil classification), accuracy and reliability of initial data	high	low	Bridge Reference View
2	Import of alignment and major road / railway parameters	alignment information is imported from roadway/railway design tool into bridge modeler	Alignment provides the basis for bridge design	From roadway / railway design system into bridge modeling system	Faceted <u>BRep</u> , Sweep Geometry where suitable (Deck, Rebar, Boring Piles <u>etc</u>), potentially based on alignment	Maximum Speeds, Loads etc.	high	low	Bridge Reference View
3	Technical Visualization	3D technical visualization of the bridge project	Communication of design solutions to third parties, including the public	Design application to Visualization app.	Triangulated Face Sets	Bridge Breakdown Structure Object Types Material (opt) Colors (opt) Relationships between entities (<u>lfcRelConnects</u>)	high	low	Bridge Reference View
4	Coordination / Collision detection	Coordination of domain-specific sub-models	Transfer and combine models to detect interferences (clashes)	Design application to Design application	Faceted <u>BRep</u> , Sweep Geometry where suitable (Deck, Rebar, Boring Piles etc) , potentially based on alignment	Component types Classification Relationships between entities (<u>lfcRelConnects</u>)	high	low	Bridge Reference View

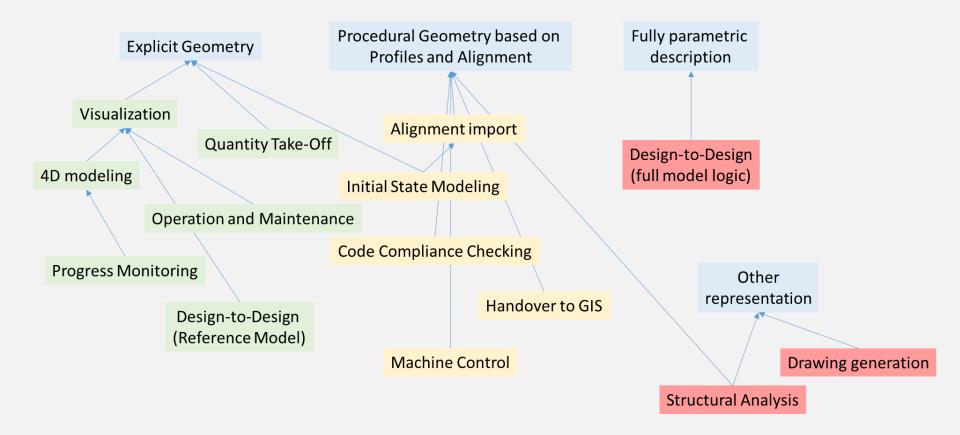
No	Use case	Description	Purpose	IFC exchange scenario	Required geometry representation	Required semantic information	Priority	Complex ity	MVD
5	4D Construction Sequence Modeling	4D technical visualization of the construction phases	Organization of construction site and construction activities	Design application to 4D scheduling application	Faceted BRep, Sweep Geometry where suitable (Deck, Rebar, Boring Piles etc), potentially based on alignment	Temporal information	high	low	Bridge Reference View
6	Quantity Take-Off	Determine quantities (volumes and surfaces) from the model	Basis for cost estimation and cost calculation	Design application to QTO application	Faceted BRep, Sweep Geometry where suitable (Deck, Rebar, Boring Piles etc), potentially based on alignment	Material, Classifications Relationships between entities (<u>lfcRelConnects</u>)	high	low	Bridge Reference View
7	Progress Monitoring	Transfer information about the progress of the construction project	Track and document the progress of the construction project	Surveying application to visualization application	Faceted BRep, Sweep Geometry where suitable (Deck, Rebar, Boring Piles etc), potentially based on alignment	Temporal information	high	low	Bridge Reference View
8	As-built vs. as-planned comparison	Compare the built structure against the as-planned model (Geometric Control)	Check the quality of the construction (on site)	Design application to field application	Faceted <u>BRep</u> , Sweep Geometry where suitable (Deck, Rebar, Boring Piles <u>etc</u>), potentially based on alignment	Classification Tolerance values Relationships between entities (IfcRelConnects)	high	low	Bridge Reference View
9	Handover to asset management	use the model to support operation and maintenance of the bridge,	use the model for inspection, damage detection, condition rating, condition prediction,	Design application to asset management system	Faceted BRep, Sweep Geometry where suitable (Deck, Rebar, Boring Piles etc), potentially based on alignment	Classification Material Maintenance information	high	medium	Bridge Asset Manageme nt View

No	Use case	Description	Purpose	IFC exchange scenario	Required geometry representation	Required semantic information	Priority	Complex ity	MVD
			maintenance planning						
10	Handover to GIS for spatial analysis	Handover the bridge design to GIS for environmental analysis and/or asset mgmt.	GIS systems provide functionality for environmental analysis and can be used for asset management	Design application to GIS system	Faceted <u>BRep</u> , Sweep Geometry where suitable (Deck, Rebar, Boring Piles <u>etc</u>), potentially based on alignment	Major design attributes	high	low	Bridge Reference View
11	Design to Design (reference model)	Use bridge model from early design phase as a <u>reference</u> for creating a more detailed bridge model in the detailed design ohase, limited modifiability required	Models are exchanged across different design phases, model from earlier phase is used us background / reference model for next phase	Design application to design application	Faceted <u>BRep</u> , Sweep Geometry where suitable (Deck, Rebar, Boring Piles <u>etc</u>), potentially based on alignment S	Classification Material Component types Relationships between entities (IfcRelConnects)	high	medium	Bridge Reference View
12	Design-to-Design (full model logic)	Exchange of fully parametric description of bridge between two distinct design applications	within the same design phase, design models are exchanged between different design applications, model <u>remains</u> <u>fully modifiable</u> ,	Design application to design application	Fully parametric model information containing model logic, constraints and dependencies	All information entered in the design application	medium	high	Bridge Design Transfer View


No	Use case	Description	Purpose	IFC exchange scenario	Required geometry representation	Required semantic information	Priority	Complex ity	MVD
			all model logic is transferred						
13	Design-to- Construction	Handover from Design Phase to Construction Phase	Bridge Model is handed over from designer to Contractor for bidding and for actual construction	Design application to Tendering application and/or Review application	Faceted <u>BRep</u> , Sweep Geometry where suitable (Deck, Rebar, Boring Piles <u>etc</u>), potentially based on alignment	Material information Product information etc.	high	medium	Bridge Reference View
14	Structural Analysis incl. Structural Dynamics, Fluid- Structure Interaction, etc.	Structural analysis of bridges, tunnels, retaining walls	Ensure stability of the structures	Design application to structural analysis application	Procedural Description (Sweep and CSG) and/or Analytical Model	Loads, Material properties	medium	medium - high	Bridge Structural View
15	Code Compliance Checking	Check design of bridge for compliance with local codes and regulations	Compliance checking conducted by regulation authorities	Design application to checking application	Procedural description (Alignment, Sweep Geometry, CSG, <u>BRep</u>)	Information regarding the applying regulations (dimensions, distances, materials, etc.)	medium	high	?
16	Drawing generation and exchange	Exchange technical drawings derived from the model	Submission to owner / regulation authorities	Design application to Submission	2D representation	All information relevant for drawing representation (line styles, symbolic representations, etc.)	low	high	?

No	Use case	Description	Purpose	IFC exchange scenario	Required geometry representation	Required semantic information	Priority	Complex ity	MVD
17	Prefabrication and manufacturing	Usage of model information for control / steering of prefabrication machines.	Partially automated construction of bridge components	Design application to machine	Procedural description (Alignment, Sweep Geometry, CSG, Advanced <u>BRep</u>)	(specific)	low	medium	?

Reference Process Map



based on work by FHWA

WP1: Requirements analysis

IFC-Bridge: Geometry required for use cases

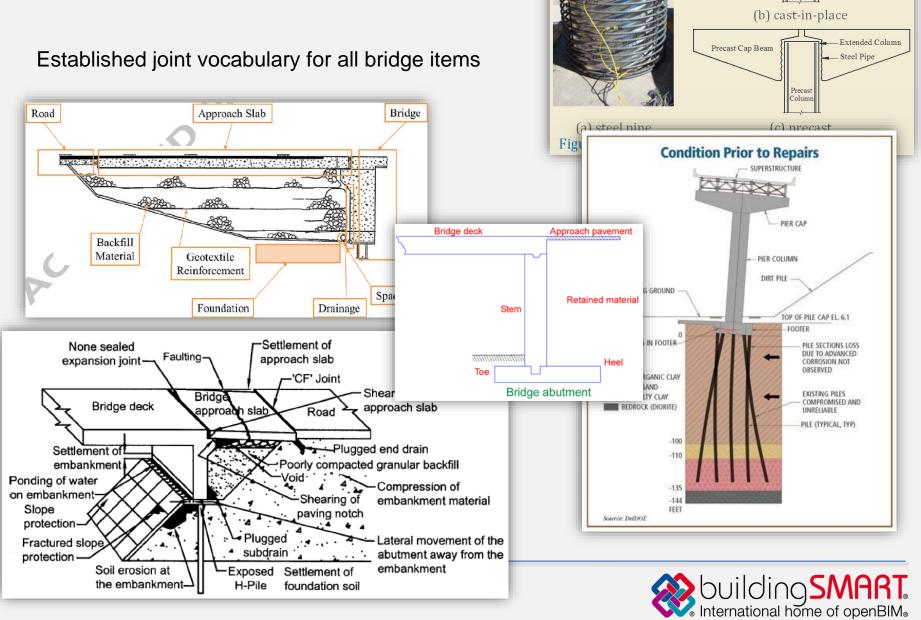
Requirements

Final Report published 05/2018

IFC-Bridge Fast Track Project

Report WP1: Requirements analysis

Status: FINAL Date: 2018-05-17


Christophe Castaing (Project Lead), André Borrmann (Technical Lead), Pierre Benning, Claude Dumoulin, Tim Chipman, Juha Hyvärinen, Thomas Liebich, Stefan Markič, Laura Mol, Sergej Muhič, Hyounseok Moon, Heikki Myllymaki, Ning Suo, Shufeng Song, Ai Shanding, Liu Siming, Zhang Yi, Nobuyoshi Yabuki, Feifei Zhao

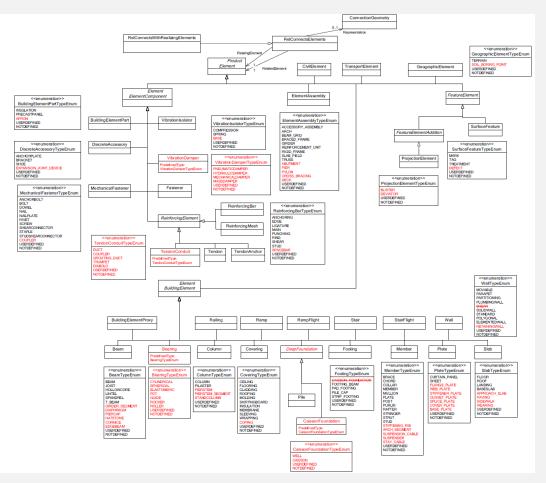
Notice:

This document might contain images on which copyright permission has not been obtained and, therefore, this document is not suitable for publication. This document is for buildingSMART Project use only.

Taxonomy

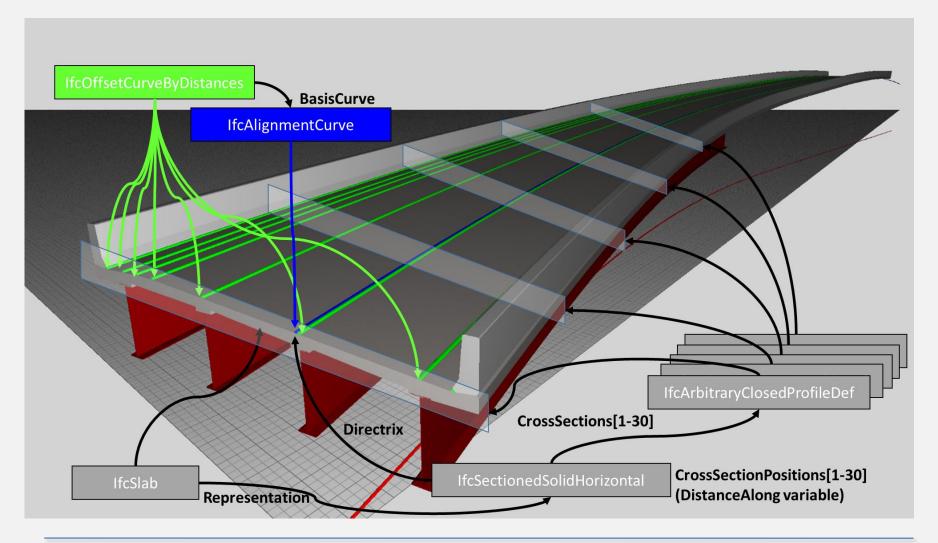
Extended Column Reinforcing Bar

Steel Pip

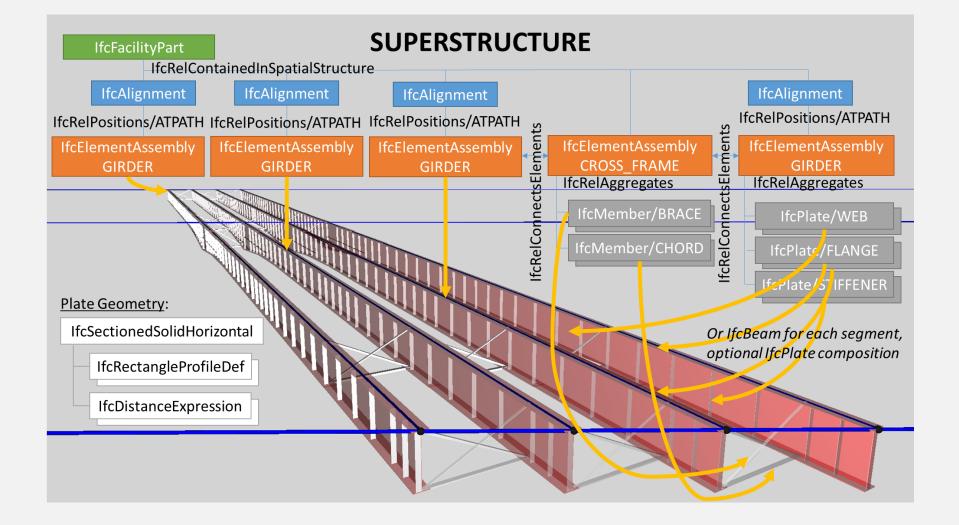

Precast

Precast Cap Beam

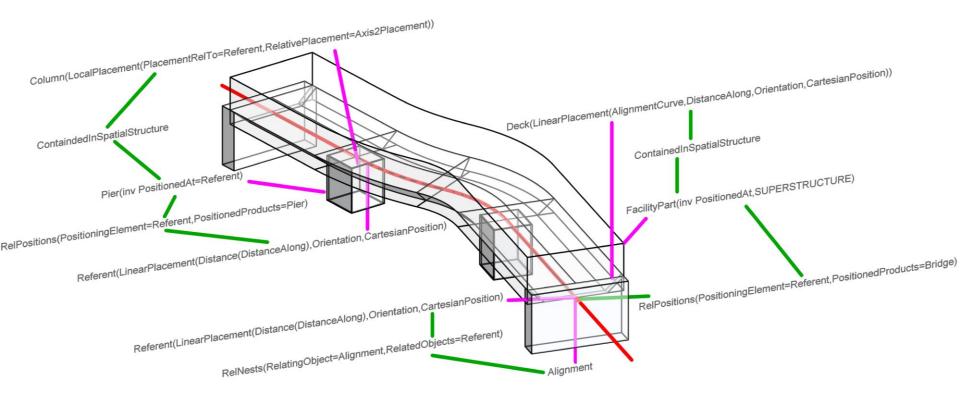
Conceptual Model


Conceptual model of the IFC Schema extension

- conformance with IFC-Infra extension guidelines
- only very few new classes
- extension of the predefined types in many classes



Geometry



Geometry

Alignment, Relative Positioning

Conceptual Model

Final Report

published on 2018/10/02

IFC Bridge Fast Track Project

Report WP2: Conceptual Model

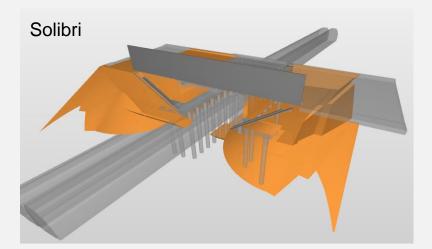
Status: FINAL Date: 2018-10-02

Christophe Castaing (Project Lead), André Borrmann (Technical Lead), Tim Chipman, Claude Dumoulin, Juha Hyvärinen, Thomas Liebich, Stefan Markič, Laura Mol, Sergej Muhič, Shufeng Song, Liu Siming

© buildingSMART Infra Room

page 1

Schema extension and documentation

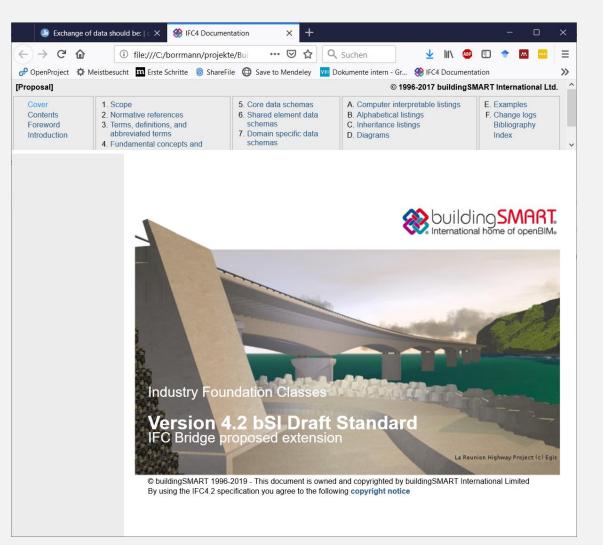

IFC 4x2 Draft 1 (30.10.2018) → Draft 2 (30.01.2019) → Final Draft (25.03.2019)

Operating of (inclusion:gramma)/ PredefinedType : OFTIONAL IfcBeamTypeEnum, WHERE CorrectPredefinedType : NOT(EXISTS(PredefinedType)) OR
<pre>CorrectPredefinedippe : NOI(EXISIS)(Fredefinedippe)) Ok (PredefinedType = IfcBeamTypeEnum.USERDEFINED) OK ((PredefinedType = IfcBeamTypeEnum.USERDEFINED) AND EXISTS (SELF\IfcObject.ObjectType)); CorrectTypeAssigned : (SIZEOF(ISTypedBy) = 0) OR ('IFC4X2 DRAFT 1.IFCEENATIVE' IN TYPEOF(SELF\IfcObject.IsTypedBy[1].RelatingType));</pre>
END_ENTITY;
ENTITY IfcBeamStandardCase SUBTYPE OF (IfcBeam); WHERE
<pre>HasMaterialProfileSetUsage : SIZEOF (QUERY(cemp <* USEDIN(SELF, 'IFCP(X) DRAFT 1.IFCRELASSOCIATES.RELATEDOBJECTS') </pre>
ENTITY IfcBeamType SUBTYPE OF (IfcBuildingElementType); PredefinedType : IfcBeamTypeEnum;
WHERE
CorrectPredefinedType : (PredefinedType <> IfcBeamTypeEnum.USERDEFINED) OR ((PredefinedType = IfcBeamTypeEnum.USERDEFINED) AND EXISTS(SELF\IfcElementType.ElementType)); END_ENTITY;
ENTITY IfcBearing SUBTYPE OF (IfcBuildingElement);
PredefinedType : OPTIONAL IfcBearingTypeEnum; WHERE
CorrectPredefinedType : NOT(EXISTS(PredefinedType)) OR (PredefinedType <> IfcBearingTypeEnum.USERDEFINED) OR ((PredefinedType = IfcBearingTypeEnum.USERDEFINED) AND EXISTS (SELF\IfcObject.ObjectType));
CorrectTypeAssigned : (SIZEOF(IsTypedBy) = 0) OR ('IFC42 DDAFT 1.IFCBEARINGTYPE' IN TYPEOF(SELF\IfcObject.IsTypedBy[1].RelatingType)); END_ENTITY;
ENTITY IfcBearingType SUBTYPE OF (IfcBuildingElementType); PredefineType : IfcBearingTypeEnum;
WHERE
CorrectPredefinedType : (PredefinedType <> IfcBearingTypeEnum.USERDEFINED) OR ((PredefinedType = IfcBearingTypeEnum.USERDEFINED) AND EXISTS(SELF\IfcElementType.ElementType)); END_ENTITY;
ENTITY IfcBlobTexture SUBTVPE OF (IfcSutfaceTexture); RasterFormat : IfcIdentifier;
RasterCode : IfcBinary; WHERE
<pre>SupportedRasterFormat : SELF.RasterFormat IN ('BMP', 'JPG', 'GIF', 'PNG']; RasterCodeByteStream : BLENGTH(RasterCode) MOD 8 = 0; END ENTITY;</pre>
ENTITY IfcBlock
SUBTYPE OF (IfcCsgPrimitive3D); XLength : IfcPositiveLengthMeasure; YLength : IfcPositiveLengthMeasure;
IDenyth : If:PositiveDenythMeasure; END_ENTITY;

6.1.3.4 IfcBearing 8 Natural language names Change log SPF XML Change Description Item IFC4x2 DRAFT 1 ADDED IfcBearing 6.1.3.4.1 Semantic definitions at the entity Entity definition Type of building element that is usually used to transmit loads from superstructure to substructure, and usually allow degrees of freedom. It is typically a mechanical component procured as a whole and installed on site, but in simple elements, element components, etc.). NOTE The sliding and roller materials are to be assigned to the bearing with the Material Constituent Set concept. NOTE The displacements and rotations accommodated can be defined in the Pset BearingCommon property set. Attribute definitions # Attribute Туре Cardinality Description 9 PredefinedType IfcBearingTypeEnum Predefined generic type for a bearing that is specified in an enumeration. Th NOTE The PredefinedType shall only be used, if no IfcBearingType is as Formal Propositions Rule Description CorrectPredefinedType Either the PredefinedType attribute is unset (e.g. because an IfcBearingType is associated), or the inherited attril USERDEFINED CorrectTypeAssigned Either there is no bearing type object associated, i.e. the IsTypedBy inverse relationship is not provided, or the as 6.1.3.4.2 Inherited definitions from supertypes Entity inheritance

Sample Files

- Spatial Structure: IfcFacility / IfcBridge
- Predefined Types
- Brep geometry
- No alignment



bSI Draft Standard IFC 4.2

Available on Sharefile

Will be brought to

standards.buildingsmart.org

IFC-Bridge Model View Definitions (MVDs)

Bridge Reference View (based on IFC4 Reference View) → Faceted Brep + Simple Sweeps

Aligment-based Bridge Reference View (based on IFC4 Reference View) → Faceted Brep + Profile Sweep (IfcSectionedSolidHorizontal)

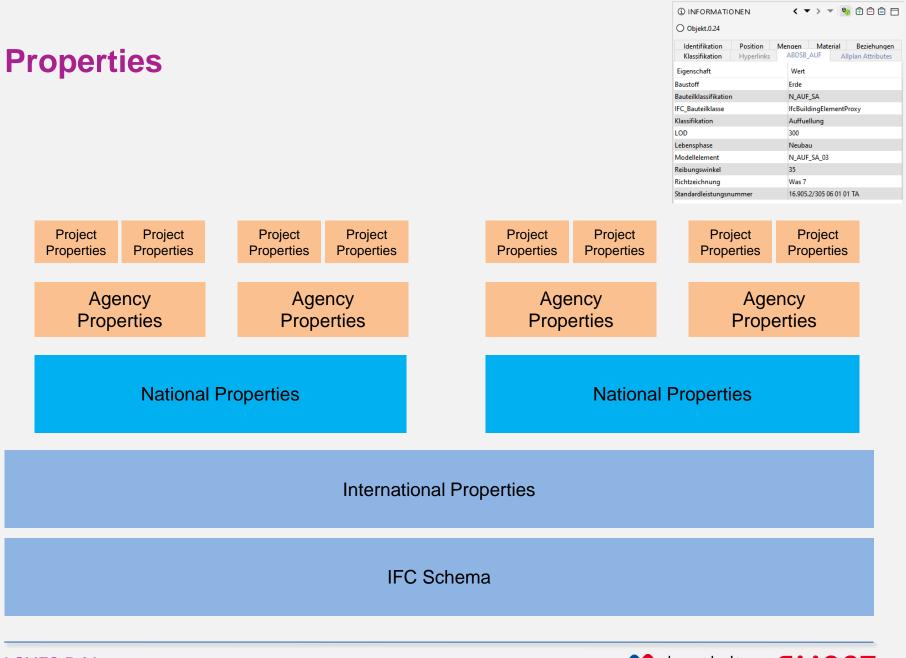
Bridge Design Transfer View (based on IFC4 Design Transfer View)

- → Alignment
- → Faceted Brep + Profiles Sweeps + CSG

Bridge Asset Management View
→ Alignment
→ Faceted Brep

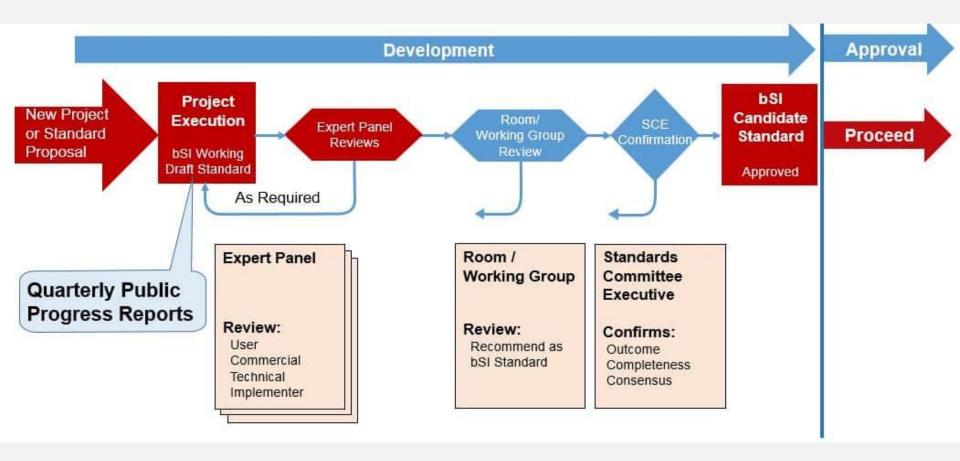
IFC-Bridge Model View Definitions (MVDs)

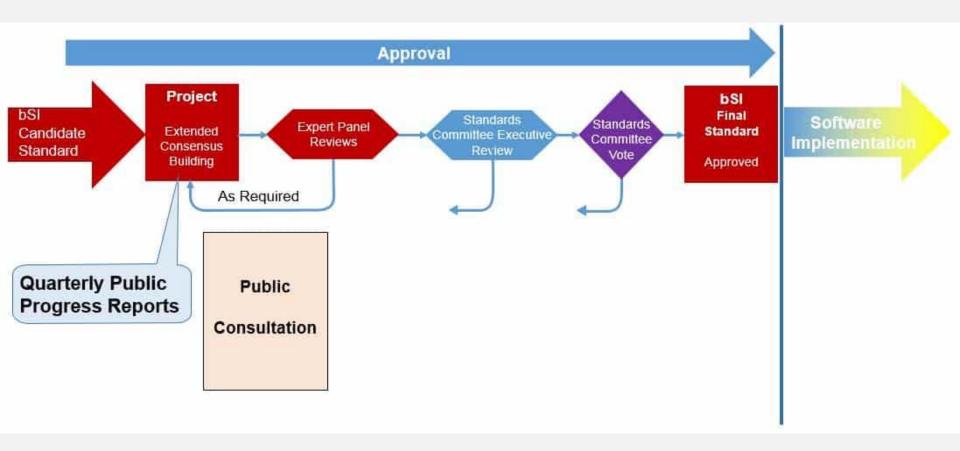
	IFC4 RV	Bridge RV	Bridge ARV	IFC 4 DTV	Bridge DTV
IfcSolidModel	х	x	x	Х	х
IfcCsgSolid				Х	х
IfcManifoldSolidBrep				Х	х
IfcAdvancedBRep				Х	х
IfcAdvancedBRepWithVoids					
IfcFacete dBrep				Х	X
IfcFacetedBrepWithVoids					
IfcSweptAreaSolid	х	x	x	Х	x
IfcExtrudedAraSolid	х	x	x	Х	x
IfcExtrudedAreaSolidTapered				Х	х
IfcFixedReferenceSweptAreaSolid				Х	x
IfcRevolvedAreaSolid	х	x	x	Х	х
IfcRevolvedAreaSolidTapered				х	х
IfcCurveSweptAreaSolid				х	х
IfcSwe ptDiskSolid	х	x	x	х	х
IfcSweptDiskSolidPolygonal					
IfcSectionedSolid			x		x
IfcSectioned SolidHorizontal			x		x
IfcTesselatedItem	х	х	x	Х	х
If cTesselated Face Set	х	х	x	х	х
IfcTriangulatedFaceSet	х	х	х	Х	х
IfcPolygonalFaceSet	х	x	x	х	х
10					



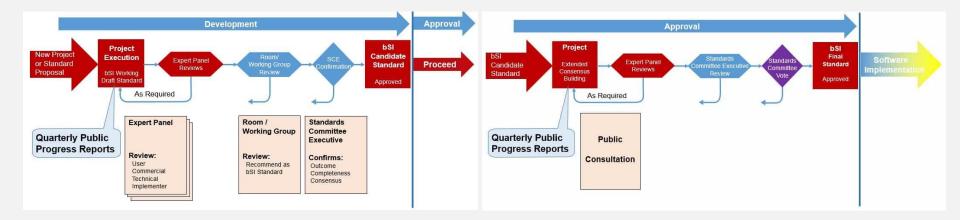
IFC-Bridge Model View Definitions (MVDs)

IFC4 RV	Bridge RV	Bridge ARV	IFC 4 DTV	Bridge DTV


16-0	I				
IfcCurve	Х	X	X	х	X
If cBounde dCurve	x	x	x	х	x
IfcAlignmentCurve			x		x
IfcOffsetCurve					x
IfcOffsetCurveByDistances					x
IfcDistanceExpression			x		x
If cOrientation Expression			x		x
IfcLinearPlacement			x		x
IfcPositioningElement	x	x	x	x	x
IfcAlignment			x		x
IfcAlignment2DHorizontal			x		x
IfcAlignment2DVertical			x		x
IfcAlignment2DSegment			x		х
IfcAlignment2DVerticalSegment			x		х
IfcAlignment2DHorizonalSegment			х		х

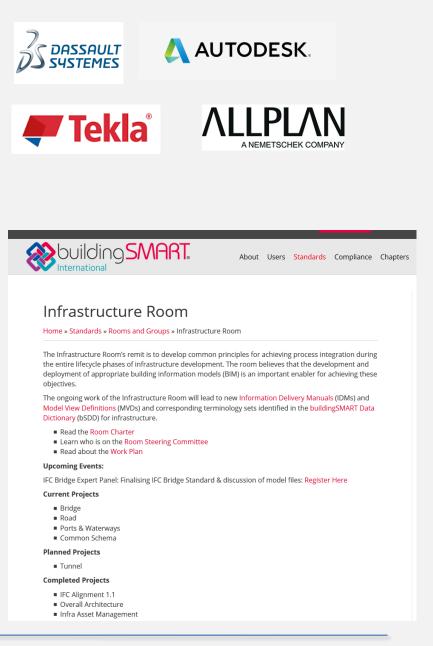

Standard Adoption Process

https://www.buildingsmart.org/standards/standards-process/#spe


Standard Adoption Process

https://www.buildingsmart.org/standards/standards-process/#spe

Standard Adoption Process



From	То	Voting & Notification
bSI Standards Proposal	bSI Working Draft Standard	SCE supports proposal. Simple majority of SC members and at least three Chapters or Members commit to take part and nominate experts.
bSI Working Draft Standard	bSI Draft Standard	Project consortia agree that the project's work plan is complete and that the consensus requirements have been met. No SC or SCE vote required.
bSI Draft Standard	bSI Candidate Standard	Consensus requirement for stage 2 demonstrated. SCE in favour. No serious opposition if it's going to be a final product for test implementation.
bSI Candidate Standard	bSI Final Standard	Consensus requirements for stage 3 demonstrated. Majority in SCE will forward it to SC. Circulation to SC 8 weeks. 65% of SC members in favor. Not more than 10% of total votes cast are negative.

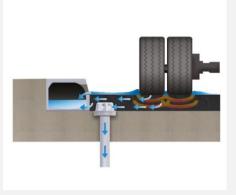
Deployment Project

- Deployment project will be started directly after the end of the development project
- Role model: IFC-Alignment project
- Allows fast uptake of the standard
- Software vendors can join the project for a fee and get intense support for implementing IFC-Bridge
- Common basis of extensive test cases
- Call for participation

Not yet covered

Parts

- Drainage
- Earthworks / Geotechnics
- Equipment
- (Defects)


Excluded use cases

- Structural analysis
- Design-to-Design, etc.

Bridge types

- More complex bridges types
- Wooden bridges, etc.

